欢迎访问 生活随笔!

ag凯发k8国际

当前位置: ag凯发k8国际 > 编程语言 > c# >内容正文

c#

持续进化,快速转录,faster-ag凯发k8国际

发布时间:2023/11/3 c# 183 coder
ag凯发k8国际 收集整理的这篇文章主要介绍了 持续进化,快速转录,faster-whisper对视频进行双语字幕转录实践(python3.10) 小编觉得挺不错的,现在分享给大家,帮大家做个参考.

faster-whisper是whisper开源后的第三方进化版本,它对原始的 whisper 模型结构进行了改进和优化。这包括减少模型的层数、减少参数量、简化模型结构等,从而减少了计算量和内存消耗,提高了推理速度,与此同时,faster-whisper也改进了推理算法、优化计算过程、减少冗余计算等,用以提高模型的运行效率。

本次我们利用faster-whisper对日语视频进行双语(日语/国语)转录实践,看看效率如何。

构建faster-whisper转录环境

首先确保本地已经安装好python3.10版本以上的开发环境,随后克隆项目:

git clone https://github.com/ycyy/faster-whisper-webui.git

进入项目的目录:

cd faster-whisper-webui

安装项目依赖:

pip3 install -r requirements.txt

这里需要注意的是,除了基础依赖,还得再装一下faster-whisper依赖:

pip3 install -r requirements-fasterwhisper.txt

如此,转录速度会更快。

模型的下载和配置

首先在项目的目录建立模型文件夹:

mkdir models

faster-whisper项目内部已经整合了vad算法,vad是一种音频活动检测的算法,它可以准确的把音频中的每一句话分离开来,并且让whisper更精准的定位语音开始和结束的位置。

所有首先需要配置vad模型:

git clone https://github.com/snakers4/silero-vad

然后将克隆下来的vad模型放入刚刚建立的models文件夹中即可。

接着下载faster-whisper模型,下载地址:

https://huggingface.co/guillaumekln/faster-whisper-large-v2

这里建议只下载faster-whisper-large-v2模型,也就是大模型的第二版,因为faster-whisper本来就比whisper快,所以使用large模型优势就会更加的明显。

模型放入models文件夹的faster-whisper目录,最终目录结构如下:

models  
├─faster-whisper  
│  ├─large-v2  
└─silero-vad  
    ├─examples  
    │  ├─cpp  
    │  ├─microphone_and_webrtc_integration  
    │  └─pyaudio-streaming  
    ├─files  
    └─__pycache__

至此,模型就配置好了。

本地推理进行转录

现在,我们可以试一试faster-whisper的效果了,以「原神」神里绫华日语视频:《谁能拒绝一只蝴蝶忍呢?》为例子,原视频地址:

https://www.bilibili.com/video/bv1fg4y1b74e/

项目根目录运行命令:

python cli.py --model large-v2 --vad silero-vad --language japanese --output_dir d:/whisper_model d:/downloads/test.mp4

这里--model指定large-v2模型,--vad算法使用silero-vad,--language语言指定日语,输出目录为d:/whisper_model,转录视频是d:/downloads/test.mp4。

程序输出:

d:\work\faster-whisper-webui>python cli.py --model large-v2 --vad silero-vad --language japanese --output_dir d:/whisper_model d:/downloads/test.mp4  
using faster-whisper for whisper  
[auto parallel] using gpu devices ['0'] and 8 cpu cores for vad/transcription.  
creating whisper container for faster-whisper  
using parallel devices: ['0']  
created silerio model  
parallel vad: executing chunk from 0 to 74.071224 on cpu device 0  
loaded silerio model from cache.  
getting timestamps from audio file: d:/downloads/test.mp4, start: 0, duration: 74.071224  
processing vad in chunk from 00:00.000 to 01:14.071  
c:\users\zcxey\appdata\roaming\python\python310\site-packages\torch\nn\modules\module.py:1501: userwarning: operator () profile_node f9 : int[] = prim::profile_ivalue(f7)  
 does not have profile information (triggered internally at ..\third_party\nvfuser\csrc\graph_fuser.cpp:108.)  
  return forward_call(*args, **kwargs)  
vad processing took 2.474104000022635 seconds  
transcribing non-speech:  
[{'end': 75.071224, 'start': 0.0}]  
parallel vad processing took 8.857761900057085 seconds  
device 0 (index 0) has 1 segments  
using device 0  
(get_merged_timestamps) using override timestamps of size 1  
processing timestamps:  
[{'end': 75.071224, 'start': 0.0}]  
running whisper from  00:00.000  to  01:15.071 , duration:  75.071224 expanded:  0 prompt:  none language:  none  
loading faster whisper model large-v2 for device none  
warning: fp16 option is ignored by faster-whisper - use compute_type instead.  
[00:00:00.000->00:00:03.200] 稲妻神里流 太刀術免許開伝  
[00:00:03.200->00:00:04.500] 神里綾香  
[00:00:04.500->00:00:05.500] 参ります!  
[00:00:06.600->00:00:08.200] よろしくお願いします  
[00:00:08.200->00:00:12.600] こののどかな時間がもっと増えると嬉しいのですが  
[00:00:13.600->00:00:15.900] 私って欲張りですね  
[00:00:15.900->00:00:18.100] 神里家の宿命や  
[00:00:18.100->00:00:19.900] 社部業の重りは  
[00:00:19.900->00:00:23.600] お兄様が一人で背負うべきものではありません  
[00:00:23.600->00:00:27.700] 多くの方々が私を継承してくださるのは  
[00:00:27.700->00:00:30.900] 私を白鷺の姫君や  
[00:00:30.900->00:00:34.600] 社部業神里家の霊嬢として見ているからです  
[00:00:34.600->00:00:38.500] 彼らが継承しているのは私の立場であって  
[00:00:38.500->00:00:41.700] 綾香という一戸人とは関係ございません  
[00:00:41.700->00:00:43.400] 今の私は  
[00:00:43.400->00:00:47.300] 皆さんから信頼される人になりたいと思っています  
[00:00:47.300->00:00:49.700] その気持ちを鼓舞するものは  
[00:00:49.700->00:00:52.300] 肩にのしかかる銃石でも  
[00:00:52.300->00:00:54.800] 他人からの期待でもございません  
[00:00:54.800->00:00:56.700] あなたがすでに  
[00:00:56.800->00:00:58.800] そのようなお方だからです  
[00:00:58.800->00:01:00.500] 今から言うことは  
[00:01:00.500->00:01:03.900] 稲妻幕府社部業神里家の肩書きに  
[00:01:03.900->00:01:06.200] ふさわしくないものかもしれません  
[00:01:06.200->00:01:11.100] あなたは私のわがままを受け入れてくださる方だと信じています  
[00:01:11.100->00:01:12.500] 神里流  
[00:01:12.500->00:01:14.000] 壮烈  
whisper took 22.232674299972132 seconds  
parallel transcription took 31.472856600070372 seconds  
max line width 80  
closing parallel contexts  
closing pool of 1 processes  
closing pool of 8 processes

可以看到,1分14秒的视频,vad用了8秒,whisper用了22秒,转录一共用了31秒。

注意,这里只是用了whisper原版的算法,现在我们添加--whisper_implementation faster-whisper参数来使用faster-whisper改进后的算法:

python cli.py --whisper_implementation faster-whisper --model large-v2 --vad silero-vad --language japanese --output_dir d:/whisper_model d:/downloads/test.mp4

程序返回:

running whisper from  00:00.000  to  01:15.071 , duration:  75.071224 expanded:  0 prompt:  none language:  none  
loading faster whisper model large-v2 for device none  
warning: fp16 option is ignored by faster-whisper - use compute_type instead.  
[00:00:00.000->00:00:03.200] 稲妻神里流 太刀術免許開伝  
[00:00:03.200->00:00:04.500] 神里綾香  
[00:00:04.500->00:00:05.500] 参ります!  
[00:00:06.600->00:00:08.200] よろしくお願いします  
[00:00:08.200->00:00:12.600] こののどかな時間がもっと増えると嬉しいのですが  
[00:00:13.600->00:00:15.900] 私って欲張りですね  
[00:00:15.900->00:00:18.100] 神里家の宿命や  
[00:00:18.100->00:00:19.900] 社部業の重りは  
[00:00:19.900->00:00:23.600] お兄様が一人で背負うべきものではありません  
[00:00:23.600->00:00:27.700] 多くの方々が私を継承してくださるのは  
[00:00:27.700->00:00:30.900] 私を白鷺の姫君や  
[00:00:30.900->00:00:34.600] 社部業神里家の霊嬢として見ているからです  
[00:00:34.600->00:00:38.500] 彼らが継承しているのは私の立場であって  
[00:00:38.500->00:00:41.700] 綾香という一戸人とは関係ございません  
[00:00:41.700->00:00:43.400] 今の私は  
[00:00:43.400->00:00:47.300] 皆さんから信頼される人になりたいと思っています  
[00:00:47.300->00:00:49.700] その気持ちを鼓舞するものは  
[00:00:49.700->00:00:52.300] 肩にのしかかる銃石でも  
[00:00:52.300->00:00:54.800] 他人からの期待でもございません  
[00:00:54.800->00:00:56.700] あなたがすでに  
[00:00:56.800->00:00:58.800] そのようなお方だからです  
[00:00:58.800->00:01:00.500] 今から言うことは  
[00:01:00.500->00:01:03.900] 稲妻幕府社部業神里家の肩書きに  
[00:01:03.900->00:01:06.200] ふさわしくないものかもしれません  
[00:01:06.200->00:01:11.100] あなたは私のわがままを受け入れてくださる方だと信じています  
[00:01:11.100->00:01:12.500] 神里流  
[00:01:12.500->00:01:14.000] 壮烈  
whisper took 10.779123099986464 seconds  
parallel transcription took 11.567014200030826 seconds

大模型只用了10秒,这效率,绝了。

中文字幕

在以往的whisper模型中,如果我们需要中文字幕,需要通过参数--task translate翻译成英文,然后再通过第三方的翻译接口将英文翻译成中文,再手动匹配字幕效果,比较麻烦。

现在,我们只需要将语言直接设置为中文即可,程序会进行自动翻译:

python cli.py --whisper_implementation faster-whisper --model large-v2 --vad silero-vad --language chinese --output_dir d:/whisper_model d:/downloads/test.mp4

这里的--language参数改为chinese。

程序返回:

running whisper from  00:00.000  to  01:15.071 , duration:  75.071224 expanded:  0 prompt:  none language:  none  
loading faster whisper model large-v2 for device none  
warning: fp16 option is ignored by faster-whisper - use compute_type instead.  
[00:00:00.000->00:00:03.200] 稲妻神里流太刀術免許改練  
[00:00:03.200->00:00:04.400] 神里綾香  
[00:00:04.400->00:00:05.400] 來吧  
[00:00:06.600->00:00:08.200] 請多多指教  
[00:00:08.200->00:00:12.600] 希望能有更多的這段寂靜的時間  
[00:00:13.600->00:00:15.800] 我真是太有興趣了  
[00:00:15.800->00:00:20.000] 神里家的宿命和社部行的重量  
[00:00:20.000->00:00:23.600] 不應該由哥哥一個人承擔  
[00:00:23.600->00:00:27.400] 很多人都敬重我  
[00:00:27.600->00:00:28.800] 是因為他們把我視為  
[00:00:28.800->00:00:34.600] 神里家的宿命和社部行的重量  
[00:00:34.600->00:00:38.600] 他們敬重的是我的立場  
[00:00:38.600->00:00:41.800] 與我自己的身分無關  
[00:00:41.800->00:00:43.400] 現在的我  
[00:00:43.400->00:00:47.400] 是想成為大家信任的一個人  
[00:00:47.400->00:00:49.800] 那些敬重我的人  
[00:00:49.800->00:00:52.400] 無論是肩上的重石  
[00:00:52.400->00:00:54.800] 或是別人的機器  
[00:00:54.800->00:00:58.800] 都是因為你已經是這樣的一個人  
[00:00:58.800->00:01:00.400] 我現在要說的話  
[00:01:00.400->00:01:03.800] 可能不適合  
[00:01:03.800->00:01:06.200] 神里家的宿命和社部行  
[00:01:06.200->00:01:11.000] 但我相信你能接受我的自私  
[00:01:11.000->00:01:12.400] 神里流  
[00:01:12.400->00:01:14.000] 消滅  
whisper took 18.85215839999728 seconds

字幕就已经是中文了,注意转录 翻译一共花了18秒,时间成本比直接转录要高。

双语字幕效果:

结语

由于 faster-whisper 的速度更快,它可以扩展到更多的应用领域,包括实时场景和大规模的数据处理任务。这使得 faster-whisper 在语音识别、自然语言处理、机器翻译、智能对话等领域中具有更广泛的应用潜力,当然了,更重要的是,当您的电脑里d盘中的爱情片还没有中文字幕时,您当然知道现在该做些什么了。

总结

以上是ag凯发k8国际为你收集整理的持续进化,快速转录,faster-whisper对视频进行双语字幕转录实践(python3.10)的全部内容,希望文章能够帮你解决所遇到的问题。

如果觉得ag凯发k8国际网站内容还不错,欢迎将ag凯发k8国际推荐给好友。

  • 上一篇:
  • 下一篇:
网站地图